The Combination Theorem and Quasiconvexity

نویسنده

  • Ilya Kapovich
چکیده

We show that if G is a fundamental group of a finite k-acylindrical graph of groups where every vertex group is word-hyperbolic and where every edge-monomorphism is a quasi-isometric embedding, then all the vertex groups are quasiconvex in G (the group G is word-hyperbolic by the Combination Theorem of M.Bestvina and M.Feighn). This allows one, in particular, to approximate the word metric on G by normal forms for this graph of groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Quasiconvexity and Relative Hyperbolic Structures

Let G be a group which is hyperbolic relative to a collection of subgroups H1, and it is also hyperbolic relative to a collection of subgroups H2. Suppose that H2 ⊂ H1. We characterize, for subgroups of G, when quasiconvexity relative to H1 implies quasiconvexity relative to H2. We also show that quasiconvexity relative toH2 implies quasiconvexity relative toH1. As an application, we give some ...

متن کامل

Hierarchically Hyperbolic Spaces Ii: Combination Theorems and the Distance Formula

We introduce a number of tools for nding and studying hierarchically hyperbolic spaces (HHS), a rich class of spaces including mapping class groups of surfaces, Teichmüller space with either the Teichmüller or Weil-Petersson metrics, right-angled Artin groups, and the universal cover of any compact special cube complex. We begin by introducing a streamlined set of axioms de ning an HHS. We prov...

متن کامل

Non - Quasiconvexity Embedding Theorem

We show that if G is a non-elementary torsion-free word hyperbolic group then there exists another word hyperbolic group G, such that G is a subgroup of G but G is not quasiconvex in G.

متن کامل

Majorisation with Applications to the Calculus of Variations

This paper explores some connections between rank one convexity, multiplicative quasiconvexity and Schur convexity. Theorem 5.1 gives simple necessary and sufficient conditions for an isotropic objective function to be rank one convex on the set of matrices with positive determinant. Theorem 6.2 describes a class of non-polyconvex but multiplicative quasiconvex isotropic functions. Relevance of...

متن کامل

Rank-.n 1/ convexity and quasiconvexity for divergence free fields

We prove that rank-.n 1/ convexity does not imply quasiconvexity with respect to divergence free fields (so-called S-quasiconvexity) in M n for m > n, by adapting the well-known Šverák’s counterexample to the solenoidal setting. On the other hand, we also remark that rank-.n 1/ convexity and S-quasiconvexity turn out to be equivalent in the space of n n diagonal matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJAC

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2001